Idempotent Cayley Graph of the Ring (Z_n,⊕,⊙)

Authors

  • Madhavi Levaku Department of Applied Mathematics, Yogi Vemana University, Kadapa
  • Seetaka Anand Department of Applied Mathematics, Yogi Vemana University, Kadapa
  • Ramya Thejeswini Department of Applied Mathematics, Yogi Vemana University, Kadapa

DOI:

https://doi.org/10.14738/aivp.1305.19467

Keywords:

Idempotent element, idempotent Cayley graph, connected, bipartite, Hamiltonian.

Abstract

The idempotent Cayley graph of the ring  is the Cayley graph associated with the symmetric set consisting of idempotent elements and their inverses in the group . In this paper, we derive some basic properties of the idempotent elements and construct the idempotent Cayley graph. It is shown that this graph is connected and Hamiltonian. Further, if , this graph is bipartite.

Author Biographies

Seetaka Anand, Department of Applied Mathematics, Yogi Vemana University, Kadapa

Project Fellow (RUSA 2.0) and Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa.

Ramya Thejeswini, Department of Applied Mathematics, Yogi Vemana University, Kadapa

Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa.

References

Akbari, S., Habibi, M., Majidinya, A., Manaviyat, R.: On the Idempotent Graph of a Ring. J. Algebra Appl. 12 (6), 1350003 (2013).

Anderson, D.F., Livingston, P.S.: The Zero-Divisor Graph of a Commutative Ring, J. Algebra 217, 434-447 (1999).

Apostol, Tom M.: Introduction to Analytic Number Theory, Springer International Student Edition (1989).

Avinash Patil, Momale, P.S.: Idempotent Graphs, Weak Perfectness and Zero-Divisor Graphs. Soft Computing, 25:10083-10088 (2021). https://doi.org/10.007/s00500-021-05982-0.

Beck, I.: Colouring of Commutative Rings, J. Algebra 116, 208-226 (1988).

Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, Macmillan, London (1976).

Devendra, J., Madhavi, L., Nagalakshumma, T.: The Zero-Divisor Cayley Graph of The Residue Class Ring (Z_n,⨁,⨀), Malaya Journal of Mathematik, Vol. 7, No. 3, pp. 590-594, 2019. https://doi.org/10.26637/MJM0703/0036

Dorbidi, H.R., Manaviyat, R., Mirvakili, S.: Some Properties of the Idempotent Graph of a Ring. Mediterr. J. Math, 13, 1419-1427 (2016).

Harary, F.: Graph Theory, Addison Wesley, Reading Mass (1969).

Joseph, A. Gallian.: Contemporary Abstract Algebra, Narosa publishing house.

Madhavi, L., Studies on Domination Parameters and Enumeration of Cycles in Some Arithmetic Graphs, Doctoral Thesis, Sri Venkateswara University, Tirupati, December (2002).

Nagalakshmi, T., Devendra, J., Madhavi, L.: The Nilpotent Cayley Graph of the Ring (Z_n,⊕,⊙), Journal of Computer and Mathematical Sciences, Vol.10(6), 1244-1252 (2019).

Razaghi, S., Sahebi, Sh.: A Graph with respect to Idempotents of a Ring, Journal of Algebra and its Applications, Vol. 20, No. 06 (2021).

DOI: 10:1142/S021949882150105X.

Somayyeh Razaghi, Shervin Sahebi: Calculating Different Indices of Idempotent Graph of a Ring Z_n, Journal of Information & Optimization Sciences, ISSn 0252-2667 (Print), ISSN 2169-0103 (Online), Vol. 44, No. 5, pp. 835-843 (2023). DOI: 10.47974/J10s-1126.

Weimin Li: Note-Idempotent Endomorphism of a Graph. Discrete Mathematics 223, 379-386 (2000).

Downloads

Published

2025-10-12

How to Cite

Levaku, M., Anand, S., & Thejeswini, R. (2025). Idempotent Cayley Graph of the Ring (Z_n,⊕,⊙). European Journal of Applied Sciences, 13(05), 278–286. https://doi.org/10.14738/aivp.1305.19467